
Lecture 1

Introduction to scientific
computing

Introduction to R for Biologists - Lauren Talluto

Why scientific computing?

Growth in big data applications, remote sensing, monitoring, sequencing

copernicus.eu

2 / 47

Why scientific computing?

Computation enables analyses that were previously impossible
(permutation tests, Bayesian statistics, next-gen sequencing)

R package BNViewer 3 / 47

Why scientific computing?

Enables the creation by non-artists of highly effective visualisations

Edward R Tufte. The Visual Display of Quantitative Information

4 / 47

Why/what is R?

Open-source domain-specific language
Scientific computing is built-in
Large number of packages specifically oriented
around statistics, data science, visualisation
Standard language for statistics, and (to a lesser
extent) bioinformatics
Excellent tools for scientific communication

Rmarkdown for websites, reports, presentations
Shiny for webapps

5 / 47

https://cran.r-project.org/
https://cran.r-project.org/

Course objectives

Learn fundamental concepts of R programming
RStudio IDE
Key programming concepts
Planning, structuring, debugging
Good scientific computiung practises

Data visualisation
Basic data science

6 / 47

This course is for beginners! No programming experience is needed

We will not cover statistical theory or advanced concepts in computer science

7 / 47

Course Format

Brief lectures to introduce general concepts (< 1 hour per session)
Structured exercises to get you coding in R

Grading

Participation in class, working on exercises (40%)
Submission of a (group) report on the exercises (60%)

8 / 47

Resources & Materials

Course web page
Getting help: stackoverflow.com, R help files, avoid chatGPT.

You will need

(recommended): your own laptop (you can also use university computers)
Extra time outside class to finish exercises (if needed)

9 / 47

https://ltalluto.github.io/ue_intro_r
file:///Users/ltalluto/projects_git/teaching/ue_intro_r/lec/stackoverflow.com

Introduction to programming in R

10 / 47

The R environment

R is two things:
1. A statistical programming language
2. A software package implementing the R language (available at

https://cran.r-project.org/)
RStudio is a comprehensive working environment for R
(https://rstudio.com/products/rstudio/)

An editor, for writing R programs
Tools to help you write and analyse code
An R console and interpreter

11 / 47

https://cran.r-project.org/
https://rstudio.com/products/rstudio/

Parts of RStudio

After launching Rstudio, create a new R script using the button in the upper left

Script: a text file where you will write an R-program. Commands in a script will
be run in order, from the top to the bottom.

12 / 47

Parts of RStudio

The editor pane is where you will write your scripts.
Execute commands by using run (control-return)

Mac users: usually you can substitute the command (⌘) key for control, and
option for alt

1

1

13 / 47

Parts of RStudio

The console pane is where commands are executed.

14 / 47

Helpful Vocabulary

console: A window where you can type commands and view (text) results
and output
interpreter: Software that translates R commands into instructions for your
computer in real time
script: a text file containing a program, or series of commands

can be run interactively (sending commands one at a time to the
console)
or in batch mode (all commands run, one after the other)

working directory: location on your computer where R will search for files,
data, etc.

15 / 47

Organising scientific projects

Create a project in RStudio to organise your work (File => New Project)
Store all files in the project folder (your project will be self-contained).
Filenames: ASCII letters (No accents), numbers, underscores (_) ONLY

16 / 47

Project folder/file structure

17 / 47

Preparing your data

Prepare data in excel
The first row is a header with column names
Column names should be legal variable names
In a separate file, describe the dataset, how it was collected, and the
meaning of each column (including units!)
Arrange your data so that each row is a single observation, each column is a
variable ("tidy" data)

18 / 47

The working directory

Your working directory is the folder where R will look for files, folders, data.

It is displayed at the top of the Console window.
You can also type getwd() in the console

19 / 47

The working directory

Your working directory is the folder where R will look for files, folders, data.

Usually set this to the project root directory
It is set automatically for you if you open R by double-clicking the
project_name.Rproj file

20 / 47

The working directory

Your working directory is the folder where R will look for files, folders, data.

Change it in the Files pane under More
Or use setwd("path/to/new/folder") in the console.

21 / 47

Variables

A variable is a name that points to some data.
Variable names can contain lower- or upper-case letters, numbers, and the _
symbol.
Names must start with letters and (when possible) should be descriptive
Variables are given values by assignment using either the = or <- symbol

Comments in R start with the # symbol
Legal variable names
x = 1
y0 = 5
time_of_day = "20:15"
dayOfWeek <- "Monday"

22 / 47

Variables

Recommendations

Use descriptive variable names instead of comments.
Avoid 1- and 2- letter names.
Separate words with underscores.
Use a consistent assignment operator (= or <-)

bad!
d is the diversity in our site, in species
d = 8

better!
site_diversity = 8

23 / 47

Data types

numeric — integer — logical — character — factor

The type of a variable tells us what kind of information it contains.

numeric: integers and floating-point (decimal) numbers
integer: a special case of numeric variable

logical: yes/no, true/false data; in R represented by the special values TRUE
and FALSE
character: strings, text
factor: special variable type for categorical (nominal & ordinal) data

24 / 47

Data types

numeric — integer — logical — character — factor

Useful functions for querying a data type are class() and mode() .

x = "a string"
mode(x)
[1] "character"

y = 5.5
mode(y)
[1] "numeric"

25 / 47

Data types

numeric — integer — logical — character — factor

Convert between data types using as

y = 5.5
as(y, "integer")
[1] 5

26 / 47

Operators

Operators perform computations on variables and constants.

The assignment operators give a value to a variable
= , <-
Both work mostly the same, use alt-dash (-) for <-

assignment
x = 5

27 / 47

Operators

Operators perform computations on variables and constants.

Mathematical operators allow us to do arithmetic
+ , - , * , / , ^

math
x + 2
[1] 7

(3 + x) * 2
[1] 16

3^2
[1] 9

28 / 47

Functions

Functions allow for more complex operations on data

Functions take arguments inside the brackets ()
arguments can be variables or constants

x = 16
sqrt(x)
[1] 4

sqrt(25)
[1] 5

29 / 47

Functions

Functions allow for more complex operations on data

Separate multiple arguments with a comma
Clarify your code by naming the arguments

see the help files (here: ?log) to learn argument names!

x = 100
log(x)
[1] 4.60517

log(x, base = 10)
[1] 2

30 / 47

Vectors

Group multiple values of the same type together in a vector.

create a vector with the concatenate function c() .

five_numbers = c(3, 2, 8.6, 4, 9.75)
print(five_numbers)
[1] 3.00 2.00 8.60 4.00 9.75

31 / 47

Vectors

Group multiple values of the same type together in a vector.

Create a sequence of integers with the : operator

one_to_ten = 1:10
print(one_to_ten)
[1] 1 2 3 4 5 6 7 8 9 10

class(one_to_ten)
[1] "integer"

32 / 47

Vectors

Group multiple values of the same type together in a vector.

Create arbitrary sequences using seq()
Repeat a value using rep()

seq(1, 5, 0.5)
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

rep(0, 5)
[1] 0 0 0 0 0

33 / 47

Vectorized operations

Many of R's basic operators and functions are vectorized: they apply one-at-
a-time to the whole vector.

five_numbers = c(3, 2, 8.6, 4, 9.75)
math on vectors is performed on each element
five_numbers + 1
[1] 4.00 3.00 9.60 5.00 10.75

five_numbers^2
[1] 9.0000 4.0000 73.9600 16.0000 95.0625

sin(five_numbers)
[1] 0.1411200 0.9092974 0.7343971 -0.7568025 -0.3195192

34 / 47

Indexing

We can use indexing with the [] operator to get a part of a vector by its
position

five_numbers = c(3, 7, 8.6, 4, 9.75)
five_numbers[3]
[1] 8.6

35 / 47

Indexing

We can use indexing with the [] operator to get a part of a vector by its
position

The index itself can be a vector!

five_numbers = c(3, 7, 8.6, 4, 9.75)
five_numbers[2:3]
[1] 7.0 8.6

five_numbers[c(2,5)]
[1] 7.00 9.75

36 / 47

Indexing

We can use indexing with the [] operator to get a part of a vector by its
position

Any legal expression that returns integers can be used inside [] !

i = 1
five_numbers = c(3, 7, 8.6, 4, 9.75)
five_numbers[i + 2]
[1] 8.6

37 / 47

Use read.csv() to read in a csv file, or read.table()
for tab- or space-delimited files.
Here I read in the Palmer Penguins dataset

read.csv will also accept a url!
url = "https://raw.githubusercontent.com/allisonhorst/
palmerpenguins/main/inst/extdata/penguins.csv"
penguins = read.csv(url)
penguins = read.csv("data/penguins.csv")

Reading data

38 / 47

https://github.com/allisonhorst/palmerpenguins/

Data frames

A data frame is a data structure for tabular data

head() shows the first few rows of a data frame
View() will open the data frame in a spreadsheet-like viewer

head(penguins)
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
1 Adelie Torgersen 39.1 18.7 181 3750
2 Adelie Torgersen 39.5 17.4 186 3800
3 Adelie Torgersen 40.3 18.0 195 3250
4 Adelie Torgersen NA NA NA NA
5 Adelie Torgersen 36.7 19.3 193 3450
6 Adelie Torgersen 39.3 20.6 190 3650
sex year
1 male 2007
2 female 2007
3 female 2007
4 <NA> 2007
5 female 2007
6 male 2007

39 / 47

Data frames

A data frame is a data structure for tabular data

Each row in a data frame is a single case
Each column is a single variable, stored as a vector

head(penguins)
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
1 Adelie Torgersen 39.1 18.7 181 3750
2 Adelie Torgersen 39.5 17.4 186 3800
3 Adelie Torgersen 40.3 18.0 195 3250
4 Adelie Torgersen NA NA NA NA
5 Adelie Torgersen 36.7 19.3 193 3450
6 Adelie Torgersen 39.3 20.6 190 3650
sex year
1 male 2007
2 female 2007
3 female 2007
4 <NA> 2007
5 female 2007
6 male 2007

40 / 47

Data frames

A data frame is a data structure for tabular data

str() gives you a summary of the structure of the data

str(penguins)
'data.frame': 344 obs. of 8 variables:
$ species : chr "Adelie" "Adelie" "Adelie" "Adelie" ...
$ island : chr "Torgersen" "Torgersen" "Torgersen" "Torgersen" ...
$ bill_length_mm : num 39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...
$ bill_depth_mm : num 18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...
$ flipper_length_mm: int 181 186 195 NA 193 190 181 195 193 190 ...
$ body_mass_g : int 3750 3800 3250 NA 3450 3650 3625 4675 3475 4250 ...
$ sex : chr "male" "female" "female" NA ...
$ year : int 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ...

41 / 47

Data frames

A data frame is a data structure for tabular data

nrow() , ncol() and dim() give you data frame dimensions

nrow(penguins)
[1] 344

ncol(penguins)
[1] 8

dim(penguins)
[1] 344 8

42 / 47

Data frames

A data frame is a data structure for tabular data

Data frame variables are normally hidden

str(penguins)
'data.frame': 344 obs. of 8 variables:
$ species : chr "Adelie" "Adelie" "Adelie" "Adelie" ...
$ island : chr "Torgersen" "Torgersen" "Torgersen" "Torgersen" ...
$ bill_length_mm : num 39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...
$ bill_depth_mm : num 18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...
$ flipper_length_mm: int 181 186 195 NA 193 190 181 195 193 190 ...
$ body_mass_g : int 3750 3800 3250 NA 3450 3650 3625 4675 3475 4250 ...
$ sex : chr "male" "female" "female" NA ...
$ year : int 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ...

print(bill_length_mm[1:5])
Error in eval(expr, envir, enclos): object 'bill_length_mm' not found

43 / 47

Indexing with $

You can use the $ operator to access a single variable within a data frame

print(bill_length_mm[1:5])
Error in eval(expr, envir, enclos): object 'bill_length_mm' not found

print(penguins$bill_length_mm[1:5])
[1] 39.1 39.5 40.3 NA 36.7

44 / 47

The with function

The with() function is a special function that makes data frame variables visible
insde the {} operator

with(penguins, {
 bill_length_mm[1:5] + bill_depth_mm[1:5]
})
[1] 57.8 56.9 58.3 NA 56.0

45 / 47

Data frame subsets

You can use the subset function to extract part of a data frame that meet
certain conditions
The == operator tests if two things are equal

penguins_gentoo_only = subset(penguins, species == "Gentoo")
head(penguins_gentoo_only)
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
153 Gentoo Biscoe 46.1 13.2 211 4500
154 Gentoo Biscoe 50.0 16.3 230 5700
155 Gentoo Biscoe 48.7 14.1 210 4450
156 Gentoo Biscoe 50.0 15.2 218 5700
157 Gentoo Biscoe 47.6 14.5 215 5400
158 Gentoo Biscoe 46.5 13.5 210 4550
sex year
153 female 2007
154 male 2007
155 female 2007
156 male 2007
157 male 2007
158 female 2007

46 / 47

Data frame subsets

You can use the subset function to extract part of a data frame that meet
certain conditions
The > and < operators test greater-than and less-than

penguins_big = subset(penguins, body_mass_g > 6000)
head(penguins_big)
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
170 Gentoo Biscoe 49.2 15.2 221 6300
186 Gentoo Biscoe 59.6 17.0 230 6050
sex year
170 male 2007
186 male 2007

47 / 47

