
Lecture 3

Programming in R

Introduction to R for Biologists - Lauren Talluto

Looping

In programming, loops allow us to do something repeatedly, without copy-
pasting code. One simple loop construct is called a for loop. Here, we create a
loop variable v that takes the values from an iteration variable (normally a
vector) named vec .

The code between the {} symbols is called a block.

vec = c(1, 5, 3, 6, 8)

for(v in vec) {
 print(v)
}
[1] 1
[1] 5
[1] 3
[1] 6
[1] 8

2 / 11

For loops — index format

Sometimes we want to iterate over something by index (for example, rows of a
data frame, or using relative positions for some reason).

Here we compute the first 20 Fibbonaci numbers.

fib = numeric(20)
fib[1] = 0
fib[2] = 1

start on 3, because the first two are already defined!
for(i in 3:length(fib)) {
 fib[i] = fib[i - 1] + fib[i - 2]
}
print(fib)
[1] 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377
[16] 610 987 1597 2584 4181

3 / 11

Conditionals

A conditional statement makes a decision based on the value of an expression.

peng = read.csv("data/penguins.csv")
(body_masses = tapply(peng$body_mass_g, peng$species, mean, na.rm = TRUE))
Adelie Chinstrap Gentoo
3700.662 3733.088 5076.016

if(body_masses['Gentoo'] > body_masses['Chinstrap']) {
 print("Gentoo penguins are larger than Chinstrap penguins")
}
[1] "Gentoo penguins are larger than Chinstrap penguins"

4 / 11

Conditionals — else clauses

An else clause allows you to make a binary choice

(bill_length = tapply(peng$bill_length_mm, peng$species, mean, na.rm = TRUE))
Adelie Chinstrap Gentoo
38.79139 48.83382 47.50488

if(bill_length['Gentoo'] > bill_length['Chinstrap']) {
 print("Gentoo penguins have larger bills than Chinstrap penguins")
} else {
 print("Chinstrap penguins have larger bills than Gentoo penguins")
}
[1] "Chinstrap penguins have larger bills than Gentoo penguins"

5 / 11

Conditionals — chaining clauses

You can chain together multiple either-or conditionals with else if

biggest_bill = max(bill_length)
if(bill_length['Gentoo'] == biggest_bill) {
 print("Gentoo penguins have the longest bills")
} else if(bill_length['Chinstrap'] == biggest_bill) {
 print("Chinstrap penguins have the longest bills")
} else {
 print("Adelie penguins have the longest bills")
}
[1] "Chinstrap penguins have the longest bills"

6 / 11

Functions

You can write your own functions using the function keyword.

Here we write a small function to decide if an input value is a prime number, up
to a maximum of 1000.

is_prime = function(x) {
 if(x > 1000)
 return(NA)

 # x cannot have factors larger than sqrt(x)
 max_factor = as(sqrt(x), "integer")
 result = TRUE # if we don't find a factor, the number is prime
 for(i in 2:max_factor) {
 # if x divides into any number with no remainder it is not prime
 if(x %% i == 0) {
 result = FALSE
 }
 }
 return(result)
}

7 / 11

Functions — default parameters

You can add defaults to parameters when you define a function.

Here we allow the user to decide the maximum, with a default of 1000.

is_prime = function(x, max_value = 1000) {
 if(x > max_value)
 return(NA)

 # x cannot have factors larger than sqrt(x)
 max_factor = as(sqrt(x), "integer")
 result = TRUE # if we don't find a factor, the number is prime
 for(i in 2:max_factor) {
 # if x divides into any number with no remainder it is not prime
 if(x %% i == 0) {
 result = FALSE
 }
 }
 return(result)
}

8 / 11

Vectorising is_prime

Here is some additional code we worked on in class.

is_prime = function(x, max_value = 1000) {
 if(any(x > max_value))
 return(NA)
 # x cannot have factors larger than sqrt(x)
 result = rep(TRUE, length(x)) # if we don't find a factor, the number is prime
 for(j in 1:length(x)) {
 max_factor = as(sqrt(x[j]), "integer")
 for(i in 2:max_factor) {
 # if x divides into any number with no remainder it is not prime
 if(x[j] %% i == 0) {
 result[j] = FALSE
 }
 }
 }
 return(result)
}

numbers = 1:50

is_prime(numbers)
ifelse(is_prime(numbers), "prime", "not prime") 9 / 11

Simulations and Random Numbers

Many times we need random numbers. Here are some useful functions for
doing this.

x is a vector, chooses n random items from x
sample(x, n)

take n random numbers between min and max
runif(n, min, max)

take n random integers from a poisson distribution
rate gives the average result
rpois(n, rate)

take n random numbers from a normal distribution
rnorm(n, mean, sd)

10 / 11

Random numbers: example

card_suits = c('hearts', 'diamonds', 'clubs', 'spades')
card_vals = c(as.character(2:10), 'J', 'Q', 'K', 'A')
card_deck = paste(rep(card_vals, 4), rep(card_suits, each = 13), sep = '-')
head(card_deck)
[1] "2-hearts" "3-hearts" "4-hearts" "5-hearts" "6-hearts" "7-hearts"

(poker_hand = sample(card_deck, 5, replace = FALSE))
[1] "6-diamonds" "10-clubs" "6-hearts" "8-hearts" "A-diamonds"

11 / 11

